后台-插件-广告管理-首页/栏目/内容广告位一(PC) |
后台-插件-广告管理-首页/栏目/内容广告位一(手机) |
阀式铅酸电池的原理
阀控式铅酸蓄电池又称“贫液电池”。
阀控铅酸蓄电池的设计原理是把所需份量的电解液注入极板和隔板中,没有游离的电解液,通过负极板潮湿来提高吸收氧的能力,为防止电解液减少把蓄电池密封,故阀控式铅酸蓄电池又称“贫液电池”。
阀控铅酸蓄电池分为三类,即大型、中性、小型。单体在200Ah及以上为大型,20~200Ah为中型,20Ah以下为小型。
电力系统在设计上一般均选用大型铅酸蓄电池,而UPS电源在设计上则选用中型铅酸蓄电池。
阀控密封式铅酸蓄电池(Valve-Regulated Lead Acid Battery)——在极群组与电池槽内壁间增加透气间隙层,改善氧循环、提高密封反应效率 电动助力车用密封铅酸蓄电池、小型阀控密封式铅酸蓄电池等密封式铅酸蓄电池相对于原来的开口富液式电池,其主要优点便在于充电时能形成氧循环,不易失水,电池在使用寿命期间一般不用添加电解液或进行其它维护。为实现氧循环,电池中电解液被完全固定在AGM隔板和正、负极板中即极群组内部不能流动,装配时需采取紧装配、负板活性物质过度等措施,并严格控制电解液数量,保证AGM隔板留有小部份孔隙,从而使充电时正极析出的氧气,能顺利通过AGM隔板到达负极,化合成水,完成氧气的循环复合。 氧气的循环复合反应方程式如下: O2+2Pb=2PbO PbO+H2SO4=PbSO4+H2O 但当电池充电进行到一定程度,负极如不能及时吸收正极析出的氧气,此时逸出极群组外的氧气在电池槽上层积累到一定压力时,还是要排出蓄电池外,从而引起失水。所以这种通常的电池装配方法并没有解决逸出极群组外的氧气的循环吸收问题。 在以上电池中,每一极群组的两边负板都与电池槽内壁紧密接触,无丝毫间隙(见图1)。原因有三:1、为了提高装配紧度,不能有空隙;2、为了最大限度地提高电池容量(特别是电动车电池),则必须在一定的空间内尽可能多的增加极板数量,故没有多余的空隙可留;3、极群组两边负板外表面在放电时不起作用,不需要留有空隙。但是放电时不起作用,在充电时也不能起作用吗?到目前为至,这是大多数电池制造商长期忽略的问题,我们完全可以利用极群组两边负板来吸收电池上层逸出的氧气。方法很简单:只需在极群组与电池槽内壁间增加透气的耐酸介质层,或者直接在电池槽内壁上加工出适当数量的凹槽以形成间隙层,当电池初充电完成后抽尽间隙内酸液,便于氧气自上而下进入电池槽上层氧气不能被吸收 电池槽上层氧气通过极群组两边负极板被吸收通过以上改进可以进一步改善电池的氧循环,提高密封反应效率。更有意义的是:一般新电池刚启用时还处于富液或准贫液状态,其极群组内部尚不能形成氧循环,但采取以上措施后,极群组两边负板在起始阶段便可以吸收氧气。因此电池的失水将减少到最低限度,充电接受能力也相应提高,解决了新电池因充电不足而产生的硫化问题,这两个方面都将延长电池的使用寿命,而且电池的负极过度也可适当减少,降低了生产成本。